Het significantieniveau begrijpen (met voorbeelden)

Het significantieniveau (ook wel alfa, α, of level of significance genoemd) geeft de maximale kans weer dat je de nulhypothese ten onrechte verwerpt. Je kiest het significantieniveau zelf voordat je een statistische toets uitvoert. Meestal kies je voor een α van 0.05 of 0.01.

Bij hypothesetoetsing wordt de verkregen p-waarde (p-value) vergeleken met het significantieniveau om te bepalen of het gevonden verschil of de gevonden relatie statistisch significant is.

Als de p-waarde kleiner is dan de gekozen drempelwaarde, is het resultaat significant. In dat geval kan de nulhypothese worden verworpen.

Wat is hypothesetoetsing?

Bij kwantitatief onderzoek analyseer je de data door middel van hypothesetoetsing. Zo bepaal je of een verband, effect of verschil statistisch significant is.

Populatie vs steekproef

In de meeste gevallen gaat het hier om data voor een steekproef uit de populatie waarin je geïnteresseerd bent, omdat het vaak niet mogelijk is om data te verzamelen voor alle leden uit een populatie.

Voorbeeld: Populatie versus steekproef
Je wilt onderzoek doen naar de relatie tussen het ontvangen van een universitaire studiebeurs en de duur van je studie.

  • Populatie: Alle studenten met en zonder beurs van alle universiteiten.
  • Steekproef: Studenten met en zonder beurs van twee universiteiten.

Het zou praktisch onmogelijk zijn om iedere student mee te nemen in het onderzoek. Daarom werf je alleen studenten op twee universiteiten, zodat je de studenten met studiebeurs kunt vergelijken met studenten zonder beurs.

Hypothesen formuleren

Allereerst formuleer je je hypothesen:

  • De nulhypothese (H0) voorspelt altijd dat er geen effect, geen relatie tussen variabelen of geen verschil tussen groepen bestaat.
  • De alternatieve hypothese (H1) geeft je belangrijkste voorspelling van een effect, een relatie tussen variabelen of een verschil tussen groepen weer.

Je wilt onderzoeken of je de nulhypothese kunt verwerpen.

Voorbeeld: Hypothesen formuleren
Je verwacht dat studenten die een studiebeurs ontvangen minder lang over hun studie doen dan studenten die geen beurs ontvangen. Je officiële hypothesen luiden als volgt:

  • H0: De studieduur van studenten die een beurs ontvangen verschilt niet van de studieduur van studenten die geen beurs ontvangen.
  • H1: De studieduur van studenten die een beurs ontvangen is korter dan die van studenten die geen beurs ontvangen.

Significantieniveau kiezen

Voordat je je statistische toets uitvoert, bepaal je het significantieniveau (α-niveau). In de meeste gevallen kies je een drempelwaarde van 0.05 (5%), maar voor een meer conservatieve (strengere) toets kies je 0.01 (1%). Als je een lager significantieniveau kiest, moet het effect groter zijn om statistisch significant te zijn.

Als de drempelwaarde voor het significantieniveau lager is, verlaag je ook het risico op een Type I-fout waarbij je de nulhypothese onterecht verwerpt. In het geval van een Type I-fout denk je dat je een effect, verband of verschil hebt gevonden, terwijl het in werkelijkheid niet bestaat (false positive). Een Type I-fout wordt ook wel een alfa-fout genoemd.

Voorbeeld: Significantieniveau kiezen
Je besluit te kiezen voor het gebruikelijke significantieniveau van 0.05 (5%). Het betrouwbaarheidsniveau is daardoor 0.95 (95%), want:

  • significantieniveau + betrouwbaarheidsniveau = 100%.

Significantieniveau kiezen voor niet-wetenschappelijk onderzoek

Meestal wordt een waarde van 0.05 of 0.01 gekozen als significantieniveau voor statistische toetsen. Je kunt echter ook een hoger significantieniveau kiezen (bijvoorbeeld 0.1 of 10%). Dit komt vaak voor bij niet-wetenschappelijk onderzoek, zoals onderzoek voor marketingdoeleinden.

In dat geval is het vaak minder belangrijk dat je het risico op Type I-fouten minimaliseert, omdat de implicaties van dit type onderzoek over het algemeen minder serieus zijn.

Lees waarom zo veel studenten Scribbr inschakelen

Ontdek nakijken op taal

Significantieniveau en p-waarde vergelijken

Iedere statistische toets levert een teststatistiek en p-waarde op. Deze p-waarde vergelijk je met het vooraf vastgestelde significantieniveau om te bepalen of het resultaat significant is.

  • Als p kleiner is dan het significantieniveau, spreek je van een statistisch significant resultaat. Je verwerpt de nulhypothese.
  • Als p groter is dan het significantieniveau, spreek je niet van een statistisch significant resultaat. Je behoudt de nulhypothese.

De p-waarde zegt niets over de juistheid van de alternatieve hypothese. De p-waarde geeft alleen aan hoe waarschijnlijk het is dat je data zouden voorkomen als de nulhypothese waar is.

Als de p-waarde lager is dan de grenswaarde, kun je de nulhypothese dus verwerpen, maar het betekent niet per se dat je alternatieve hypothese waar is.

Voorbeeld: Significantieniveau
Je gebruikt een t-toets om de studieduur van de studenten met studiebeurs met die van studenten zonder studiebeurs te vergelijken. De p-waarde blijkt 0.003 te zijn. De vooraf gekozen drempelwaarde was 0.05.

Dit betekent dat de p-waarde kleiner is dan het significantieniveau, en dat het gevonden verschil in studieduur significant is. Je verwerpt de nulhypothese.

Rapporteren van je resultaten

Als je je resultaten rapporteert, is het belangrijk om niet alleen de teststatistiek en p-waarde te vermelden, maar ook relevante descriptieve statistieken, zoals het gemiddelde en de standaarddeviatie.

Voorbeeld: Rapportage
De studenten zonder studiebeurs (M = 4.67, SD = 2.14) doen significant langer over hun studie dan studenten met studiebeurs (M = 3.81, SD = 1.92), t(108) = 2.22, p = .0029. Dit is in lijn met de alternatieve hypothese.

Cohen’s d had een waarde van 0.266, wat overeenkomt met een klein effect.

Let op: In het Nederlands gebruik je de komma als decimaalteken, maar bij het rapporteren van statistische resultaten is het gebruikelijk om de punt als decimaalteken te gebruiken.

Kritiek op de statistische significantie

Het is belangrijk om je ervan bewust te zijn dat veel onderzoekers kritiek hebben op de wijze waarop blind wordt vertrouwd op statistische significantie.

  • De drempelwaarde (zoals 0.05 of 0.01) is vrij willekeurig. Een afname van de p-waarde met 0.001 kan een resultaat significant maken, terwijl in de praktijk niets verandert.
  • De significantie wordt beïnvloed door de steekproefomvang. Het is makkelijker om een significant resultaat te vinden met een grote steekproef dan met een kleine steekproef.
  • Er is sprake van een publicatiebias: wetenschappelijke tijdschriften publiceren bijna uitsluitend onderzoeken met statistische resultaten, omdat deze interessanter worden gevonden. Vaak kunnen deze resultaten bij herhaling niet worden gerepliceerd.

Veelgestelde vragen

Wat is statistische significantie?

Statistische significantie is een term die door onderzoekers wordt gebruikt om aan te geven dat het onwaarschijnlijk is dat hun resultaten op toeval gebaseerd zijn. Significantie wordt meestal aangeduid met een p-waarde (overschrijdingskans).

Statistische significantie is enigszins willekeurig, omdat je zelf de drempelwaarde (alfa) kiest. De meest voorkomende drempel is p < 0.05, wat betekent dat de kans 5% is dat de resultaten worden gevonden terwijl de nulhypothese waar is. Een andere drempel die vaak wordt gekozen is < 0.01.

Als de p-waarde lager is dan de gekozen alfa-waarde, mag je stellen dat het resultaat van de toets statistisch significant is.

Hoe bereken je een p-waarde (p-value)?

Je berekent p-waarden meestal automatisch met het programma dat je gebruikt voor je statistische analyse (zoals SPSS of R). Je kunt de p-waarde ook schatten met behulp van tabellen voor de teststatistiek die je gebruikt.

P-waarden vertellen je hoe vaak een teststatistiek waarschijnlijk zou voorkomen onder de nulhypothese, op basis van de positie van de teststatistiek in de nulverdeling.

Als de teststatistiek ver verwijderd is van het gemiddelde van de nulverdeling, dan is de p-waarde klein. Dit laat zien dat het niet waarschijnlijk is dat de teststatistiek zou voorkomen als de nulhypothese waar is.

Kun je op basis van de p-waarde aannemen dat de alternatieve hypothese waar is?

Nee, de p-waarde zegt niets over de alternatieve hypothese. De p-waarde geeft aan hoe waarschijnlijk het is dat de data die je hebt gevonden zouden voorkomen als de nulhypothese waar zou zijn.

Als de p-waarde onder je grenswaarde (vaak p < 0.05) valt, kun je de nulhypothese verwerpen, maar dit betekent niet per se dat je alternatieve hypothese waar is.

Wat is een significantieniveau?

Het significantieniveau (alfa, α) geeft de maximale kans weer dat je de nulhypothese ten onrechte verwerpt (een Type I-fout). Je kiest het significantieniveau zelf voordat je een statistische toets uitvoert. Meestal kies je voor een α van 0.05 (5%) of 0.01 (1%).

Wat is het doel van hypothesetoetsing?

Bij kwantitatief onderzoek analyseer je de data door middel van hypothesetoetsing. Je voert een statistische analyse uit en vergelijkt de verkregen p-waarde met het vooraf gekozen significantieniveau. Zo bepaal je of een verband, effect of verschil statistisch significant is.

Wat vind jij van dit artikel?
Julia Merkus

Julia heeft onder andere een bachelor in Nederlandse Taal en Cultuur en twee masters in Linguistics en Taal- en Spraakpathologie, waardoor ze heel wat scripties heeft geschreven. Na enkele jaren als editor schrijft ze nu artikelen over alles wat bij een scriptie komt kijken om zo studenten met succes te laten afstuderen.